Less than obvious

Statistical treatment of data below the detection limit
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As researchers increasingly investigate
trace substances in the world’s soil, air,
and water, they frequently find concen-
trations that are lower than limits
deemed reliable enough to report as nu-
merical values. These so-called ‘‘less-
than’ values—values stated only as
““<rl,”” where rl is the ‘‘reporting limit”’
or ‘‘limit of quantitation’’ (1) or *‘deter-
mination limit’’ (2)—present a serious
interpretation problem for data analysts.
For example, compliance with wastewa-
ter discharge regulations usually is
judged by comparing the mean of con-
centrations observed over some time in-
terval with a legal standard. Yet mean
values from samples cannot be comput-
ed when less-thans are present.

Studies of groundwater quality at
waste-disposal sites commonly involve
comparisons of two groups of data (up-
gradient versus down-gradient welis).
Usually, ¢ tests (the most common test
for determining whether two means dif-
fer) are employed for this purpose, but
the ¢ test requires estimates of means
and standard deviations that are impos-
sible to obtain unless numerical values
are fabricated to replace any less-thans
present in the data. The results of such
tests can vary greatly depending on the
values fabricated. Therefore, estimates
of summary statistics (such as mean,
standard deviation, median, and inter-
quartile range) that best represent the
entire distribution of data, below and
above the reporting limit, are necessary
to analyze environmental conditions ac-
curately. Also needed are hypothesis test
procedures that provide valid conclu-
sions as to whether differences exist
among one or more groups of data.
These needs must be met using the only
information available to the data analyst:
concentrations measured above one or
more reporting limits, and the observed
frequency of data below those limits.

This paper discusses the most appro-
priate statistical procedures for handling
data that have been reported as less-
thans. It does not consider the alterna-
tive of reporting numerical values for all
data, including those below reporting
limits (3-6).

Estimating summary statistics

Methods for estimating summary sta-
tistics of data that include less-thans
(statisticians call these ‘‘censored
data’’) can be divided into three classes:
simple substitution, distributional, and
robust methods. Recent papers have
documented the relative performance of
these methods (7-71). The first three pa-

pers compare the abilities of several es-
timation methods in detail over thou-
sands of simulated data sets (7-9). They
are applied to numerous water-quality
data sets, including those that are not
similar to the assumed distributions re-
quired by the distributional methods
{10). A single case study is reported
(11). Only one report deals with censor-
ing at multiple reporting limits (9).
Large differences in these methods’
abilities to estimate summary statistics
have been found.

Which summary statistics are ap-
propriate? Environmental quality data
usually are positively skewed, and
sometimes very highly skewed (7, 12—
14). This is especially true for data close
to zero that include censored values, be-
cause the lower bound of zero ensures a
positive skew. In a typical pattern, most
data have low values, but a few high
“‘outliers’” occur. In such cases, the
mean and standard deviation are affect-
ed strongly by those few observations
that show the highest values. The mean
and standard deviation may be quite
sensitive to the deletion or addition of
even one observation, and therefore are
poor measures of central value and vari-
ability. For positively skewed data, the
mean may be exceeded by less than half
of the observations, sometimes even by
25% or less. The mean, therefore, is not
a good estimate of the central value of
those data. Similarly, the standard devi-
ation will be inflated by outliers, imply-
ing a variability larger than that shown
by the majority of the data set. The
mean and standard deviation are useful
for mass loadings of a constituent, such
as computations of the average sediment
concentration at a river cross section.
Large concentrations at one point in the
Cross section should increase the overall
mean value. However, when the strong
influence of one large value distorts
summaries of data characteristics, such
as the ‘‘typical”’ sediment characteris-
tics found over many streams, the mean
and standard deviation usually are not
appropriate measures.

Alternative measures of central value
and variability for skewed data are percen-
tile parameters such as the median and in-
terquartile range (IQR). By definition, the
median has 50% of the values of the data
above it and 50% below. Unlike the mean,
the median is not strongly affected by a few
low or high “‘outlier observations.” It is a
more stable (or ‘‘resistant’’) estimator of
typical value for skewed data and is similar
to the mean for symmetric (nonskewed)
data. Often, the ‘‘geometric mean,” the
mean of logarithms of the data, is comput-
ed for the same purpose. The geometric
mean is an estimate of the median (in orig-
inal units) when the logarithms are sym-
metric.

Like the median, the IQR is largely
unaffected by the lowest or highest data
values. It is the 75th percentile minus
the 25th percentile, and thus is the range
of the central 50% of the data. The IQR
equals 1.35 times the standard deviation
for a normal distribution. However, for
the skewed distributions common to en-
vironmental monitoring data, the IQR
often will be much smaller than the
standard deviation, and a better estimate
of variability of the bulk of the data.

The median and the IQR have another
advantage when applied to censored
data; When the values of less than 50%
of the data are below the reporting limit,
the sample median is known. Similarly,
when less than 25% of the data are cen-
sored, the sample IQR is known. No
**fix-ups’’ are necessary to obtain sam-
ple estimates.

Comparing estimation methods. Es-
timation methods may be compared on
the basis of their ability to replicate true
population statistics. Departures from
true values are measured by root mean
squared error (RMSE), which combines
bias and lack of precision. Methods with
lower RMSE are considered better.

Class 1: Simple substitution methods.
These methods substitute a single value
such as one-half the reporting limit for
each less-than value. Summary statistics
are calculated using these fabricated
numbers together with the values above
the reporting limit. These methods are
widely used, but have no theoretical ba-
sis. As Figure 1 shows, the distributions
resulting from simple substitution meth-
ods have large gaps and do not appear
realistic.

All of the studies cited above deter-
mined that simple substitution methods
perform poorly in comparison with oth-
er procedures (7—11). The substitution
of zero produces estimates of mean and
median that are biased low, whereas
substituting the reporting limit results in
estimates above the true value. Results
for the standard deviation and IQR, and
for substituting one-half the reporting
limit, also are far less desirable than
those for alternative methods. With the
advent of convenient software (11) for
other procedures, there appears to be no
reason to use simple substitutions for
such computations. Because large differ-
ences may occur in the resulting esti-
mates, and as the choice of value for
substitution essentially is arbitrary with-
out some knowledge of instrument read-
ings below the reporting limit, estimates
resulting from simple substitution are
not defensible.

Class 2: Distributional methods. Dis-
tributional methods (Figure 2) use the
characteristics of an assumed distribu-
tion to estimate summary statistics. Val-
ues of data below and above the report-
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ing limit are assumed to: follow a

FIGURE 1 distribution such as the lognormal. Giv-
Histograms for simple substitution methods for handling en 2 distribution, estimates of summary
less-than values statistics are computed that best match

the ‘observed -concentrations above the

reporting - limit .and the- percentage of

data below the limit:-Estirnation meth-

odsinclude maximum  likelihood “esti-

mation (MLE) (15} and probability plot-

ting. procedures (16). Although MLE

estitnates ‘are “more precise than proba-

bility plotting, both methods are unbi-

. ased when observations fit the assumed

ggggggtéatwns distribution exactly and the sample size

above the is large: This s rarely the case, howev-

reporting limit er. 'When data do not match the ob-

served distribution, -both. methods - may

produce biased and-imprecise ¢stimates

(7,-9). The ‘most “crucial consideration

when using distributional methods, then,

is how well the data can be expected to

fit the assumed distribution. Even when

distributional “assumptions are. correct,

MLEs have been shown to produce esti-

mates with large bias and poor precision

for the small sample sizes (n =5, 10,

and 15} considered common for envi-

ronmental data (8). MLE methods. com-

FIGURE 2 monly are used -in-environmental- disci-

Distributional (MLE?) method for computing summary statistics plines such as air quality ‘studies (17}
MLE fits "best” lognormal distribution to the data ... . and geochemistry (/2).

- ey Assuming a lognormal distribution for

Reporting limit concentrations, “MLEs for ‘larger data

sets (n = 25, 50).have provided excellent

estimates. of ‘percentiles (median- and

IQR) for a varniety of data distributions

Fitted “best” realistic for environmental studies, in-

lognormal cluding those that are not lognormal.

distribution However, they have not worked as well

for estimating the mean and standard de-

viation (7, 10). There are two reasons

this is so.

First; the lognormal distribution i
flexible in shape ‘and provides” reason-
able approximations to data which are
nearly symmetric, as well as. {0 some
positively. skewed . distributions: which
are not-lognormal. Thus the lognormal
can mimic the actual shape of the data
over much of the distribution, adequate-
~+ v and then determines summary statistics of the fitted distribution to ly reproducing percentile statistics even
represent the data though the data were nof truly lognor-
mal in shape. However, the moment sta-
tistics (mean.and standard deviation) are
very- sensitive to values of the largest
observations.  Failure of the assumed
distribution to fit these observations will
result in-poorestimates of moments.

Second, there is a transformation bias
(Table ‘1) inherent 'in. computing esti-
mates of .the mean and standard devia-
tion-for any -transformation~including
logarithms~-and then transforming back
to original units "(18-19). Percentles,
however,. can:be transformed. directly
between ‘measurement ‘scales without
bias. Estimates of mean and standard
deviation computed in transformed units
by -MLEs or other methods are- biased

Frequency
of dooutrence

Coticentration

Freguency of
occufrence

Concentration

Heporting fimit
Median

Mean

Frequency of
occurrence

Concentration
IMaximum ikelhood sshimation.
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when they are retransformed. Several
studies -have included methods that at-
tempt to correct for this bias (9, 11, 12).

Two - distributional methods that are
used less frequently are a:“fill-in-with
expected values” MLE ‘techmgque (8)
and a probability plot-method which ¢s-
timates the mean and standard deviation
by.the intercept and slope, respectively,
of a-hine fit to data above the reporting
limit (16).. Probability ‘plot. methods are
easy to-compute with standard statistics
software, an advantage for practitioners.
Both: methods’ suffer from- transforma-
tion bias; however, ‘when estimates are
computed in-one scale and then retrans-
formed-back into-original units: There-
fore, the ‘probability. plot has been rec-
ommended for estimating:the geometric
mean (16}, but it would not work well
for estimating the mean in original units
becauseof transformation  bias. Both
methods should be slightly less precise
than-MLEs.

Class 3 Robust methods. These meth-
ods (Figure- 3) combine observed data
above the: reporting limit with below-
limit values: extrapolated, assuming a
distributional shape, in order to compute
estimates of summary statistics (Figure
4).- A distribution is fit to the data-above
the ‘reporting limit by either MLE or
probability. plot: procedures (7.. 9), but
the fitted distribution is used only-10 ex:
trapolate a collection of values below
the -reporting - limit.- These extrapolated
valugs are not considered estimates for
specific samples, but are- used. collec-
tively only to- estimate summary statis-
tics. The robustness of these methods re-
sults primarily from: their ~use of
observed data rather than a fitted distri-
bution above the reporting limit.: They
also-avoid transformation bias by per-
forming -all computations. of  summary
statistics in original units,

Robust methods have produced con-
sistently -small. errors -for all-four sui-
mary statistics in simulation studies (7,
9}, as well as when applied to-actual
data (10). Robust methods have at least
two. advantages over distributional
methods for computation of means and

FIGURE S
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standard- deviations. First, they. are not
as sensitive to the fit of a distribution for
the  largest observations. because actual
observed data are used rather than g fit-
ted distribution above the reporting lim-
it-Second, estimates-of extrapolated val-
ues can be directly retransformed and
summary statistics.computed in the orig-
inal units, thereby avoiding transforma-
tion bias,

Recommendations.- Robust proce-
dures have substantial advantages over
distributional- methods: when- concentra-
tions cannot ‘be assumed to follow a de~
fined distribution. In practice, the distri-
bution of environmental data is rarely if
ever known, and it may vary between
constituents, time periods, and locations,
It is ot surprising, therefore, that robust
methods--have been recommended. for
estimating the ‘mean and standard devia-
tion (7, 9). Either robust probability plot
or -distributional - MLE procedures per-

form-well for estimating the median-and
IOR (7-9). The use of these methods;
rather. than: simple - substitution methods
for environmental data; should reduce
estimation errors: for summary. statistics
substantially.

Multiple reporting lmits, Data sets
may :contain - values: censored at-more
than one reporting limit. This occurs fre-
quently as limits-are lowered over time
at'a single laboratory, or when data hav-
ing different reporting limits are com-
bined: from multple  laboratories. Esti-
mation methods that belong to the three
classes described -above are available to
remedy: this situation. A comparison of
these methods (9) again leads to:the
conclusion- that- robust methods provide
the best estimates of mean and standard
deviation, and MLEs for percentiles. For
example, in Figure 5, the error rates for
sixX_ estimation: methods are. compared
with the-error that would-occur had-all
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data been above the: reporting limit
{shown as the 100%: line). Figure 6
shows the same information when the
data differ markedly from a lognormal
distribution (9).; The simple substitution
methods ZE, HA, and DL (substitunion
of zero,-one-half,-and one times the re-
porting limit)_have more error in most
cases than does MR (the robust proba-
bility plot method). A lower RMSE that
results. from  the -use . of substitution
methods isan “artifact of constant,
strongly biased estimates, also not-a de-
sirable result: MM (the maximum likeli-
hood procedure) and AM (the MLE ad-
justed for-ransformation: bias) show
themselves to-be excellent estimation
methods for percentiles. but they suffer
from- large errors ‘when the mean and
standard. deviation are estimated. In
summiary, the use of MLE for estimation
of percentiles and of the robust probabil-
ity plot method for estimating the mean
and standard deviation  should - decrease
errors far more efficiently than would
simple - substitution- methods for-data
with multipie reporting limits.

Software for: computations. MLE
methods require advanced computation-
al_software, These and other distribu-
sional methods “for single reporting lim-
its, “including the distributional (slope-
intercept) probability: plot estimator,
recently were made available to the sci-
entific community (27}, By contrast; the
robust-probability plotting ‘method for a
single reporting limit can be computed
easily by most-commeroially -available
statistics software. Normal scores
(“!NSCORES” of Migitab..or “'PROC
RANK" within SAS; for-example) first
are computed with all less-thans set to
slightly-different-values-all below the-re-
porting limit, Second. a linear regression
equation:is developed using only the
above-limit observations; where log ‘of
concentration 15 the v variable and nor-
mal scores-the x variable. Estimates for
the below-limit data then are extrapolat-
ed -using .this regression- equation- from
normal scores for the below-limit data
Finally, extrapolated estimates. are. re-
ransformed into units of concentration,
combined with above-limit: concentra-
tion- data; and summary- statistics com-
puted. Fortran code for multple report-
mg-limit technigues may be obtained by
sending a self-addressed, stamped enve-
lope and a formatted -3 1/2 inch disk
(MS8-DOS ‘or Macintosh: format)-to the
author,

Methods for hypothesis testing

Methods for ‘hypothesis testing of
censored data can be classitied into the
three types: simple substitution (class 13,
distribational -or- parametric {class: 23,
and robust or nonparametric - (class 3
Parametric statistical tests frequently are

used in -environmental assessments.
They assume that data follow some dis-
tributional. shape,. usually the normal
distribution, Parameters (frue population
statistics), such as the mean and. stan-
dard deviation, are estimated to perform
the test. When censoring 1S present, val-
ues-often are fabricated to estimale these
parameters-(class 1) Problems caused
by fabrication . are.illustrated below.
Parametric tests that-do not require- sub-
stitutions for less-thans (¢lass 2).also are
available, Where the distributional: as-
suniptions are appropriate, these rela-
tively unknown tests are very useful.

1770 Environ. Sci. Technol., Vol. 24, No, 12,1990

Investigators have; on gccasion; delet-
ed censored data before hypothesis test-
ing. This approach . is the. worst-proce-
dure -because it causes a-large-and
variable bias in the parameter estimates
for-each group: After deletion, compari-
sons made are between the upper X % of
one group versus: the upper Y % of -an-
other. where X-and ¥ may be very dif-
ferent. Such tests have little or no mean-
ng:

Alternatively, nonparametric tests can

be: performed- (20). These tests simply
rank’ the data and ‘indicate whether the
ordering of the: data points shows that
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differences occur or that trends exist: No
fabrication of data values is required be-
cause all censored data are represented
by. ranks that ‘are tied at values lower
than  the lowest number- above: the re-
porting limit. Thesé tests génerally have
greater ‘power than parametric tests
when the data do not conform to.a nor-
mal distribution (20,-21).

A§ an example of the differences be-
tween hypothesis test methods for cen-
sored data, tests were performed that de-
termine ~whether ‘means ‘or: medians
significantly differ between two groups.
Two data sets were generated from log-
normal -distributions having the same
variance but differing ‘mean-values,
Sample statistics for the two' data sets
before and after censoring are given in
the box.

Before any censoring, group means
are shown to be significantly different
by a tiest{p = 0.04, Table 2) and by at
test for regression: slope equal: to:zero.
The - latter is performed by designating
the data set each observation belongs to
as. either a zero or one. This binary vari-
able then is used-as the explanatory (in:
dependent) variable ‘ina linear regres-
sion. “Though identical to the 7 test
before: censoring, a-variation of. the re-
gression approach will become the dis-
tributional {class 2y method for censored
data used later. The equivalent nonpara-
metric test, the rank-sum test; produces
a much lower p-value (p = 0.003). This
lower p-value is consistent with the
proven greater power of the nonpara-
metric test to detect differences between
groups of skewed data (21,°22); com-
pared with the 1 test,

Suppose that these data represent: dis-
solved-arsenic concentrations: A typical
reporting limit for dissolved arseni¢ is
Iopg/l; therefore all data below 1.0
would. be-recorded -as- <1, Censoring
these ‘data sets a1 produces 14 less-
than values (70%).in group A and five
less-than values (23%):in group B (box).

The class - method for comparing
two proups of censored data is to fabri-
cate.data for all less-than values, and -
clude these *'data’’ with detected obser-
vations ‘when ‘performing a ¢ test. Noa
priori arguments for fabrication of any
particular value between zero and the re-
porting limit can be made: When zero is
substituted for all less-than valoes,; the
means are declared significantly differ-
ent. (@ = 0.01). Yet when the reporting
limit of 1.0 15 substituted; the means-are
not found 1o be different (p'=0.19). The
conclusion therefore 'is strongly depen-
dent on: the value substituted! - This ex-
ample shows that the fabrication of data
followed by a7 test must be considered
too-arbitrary for.use, especially for legal
or-mandgement “decision purposes, and
should be avoided.

Characteristics of two lognormal data groups k
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The “distributional (class 2} method
for: hypothesis testing also requires an
asspmption: of normality.-but does not
involve the substitution of 'values for
censored data. Instead, a 1 test 15 per-
formed using a regression procedure for
censored data known as: fobit regression
{23,-24).-Tobit regression uses the ‘data
values above the reporting Jimit and the
proportion .of data below the reporting
fimit-10- compute  a-slope coefficient by
maximum likelihood. For a two-group
test, the explanatory. variable in the re-
gression equation is-the bhinary variable
of ‘group number, so that data-in’ one
group have a value of zero,; and in the
other group a value of one. The regres-
sion slope then equals the difference be-
tween the two group-means, and the ¢
test for whether this slope differs from
zero also is.a test of whether the group
means- differ. (Tobit regression is also
discussed later in the section on regres-

sion.} One advantage of tohit regréssion
for hypothesis testing is that-multiple re-
porting limits may be easily incorporat-
ed. Users should be cautioned; however,
that proper application requires that the
data in both.groups be normally distrib-
uted: around their group ‘mean and - that
the variance in each group be equal. For
large "amounts of censoring, these re-
strictions. are difficult to verify.

The nonparametric - (class - 3) equiva-
lent s the rank-sum test; It considers the
19 Jess-than values tied at the lowest
value, with each assigned a rank-of - 10
(the mean of ranks 1-19). The resulting
p-valug is 0.002, essentially the same as
for the original data, and the two groups
are easily declared different. In this ex-
ample, the nonparametric method makes
very. efficient use of the information
contained in the-less-than values, avoids
arbitrary -assignment of- fabricated val-
ues; and accurately represents the lack
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of knowledge below the reporting limit.
Results do not depend on 4 distribution-
al assumption (25

When severe censoring {near 50% or
more}occurs, all of the above tests have
tittle power 1o detect differences in cen-
tral values. The investigator will find it
difficult to state conclusions about: the
relative. magnitudes of central values,
and - other: characteristios must be com
pared. For instance, contingency tables
(class 3) cantest-for a difference in the
proportion of data above the reporting
limit in-each group (20}, This test can be
used when the data-are reporied only as
detected or not detected. It also may be
used when response-data can be catego-
rized ‘into three or more groups, such as
below detection; detected ‘but below
sorne - health -standard; and exceeding
standards. The test defermines whether
the -proportion -of data falling-into -each
response ‘category differs as a function
of different explanatory. groups,.such as
different sites or land useé categories.

Hypothesis testing with multiple re-
porting limits. More than one reporting
limit often 15 present in environmental
data.-When this occurs, hypothesis tests
such -as comparisons between data
groups are greatly complicated. The fab-
rication of “data followed by computa-
tion-of 7 tests or simildar parametric pro-
cedures: is -at-least as arbitrary: with
multiple reporting limits as with one re-
porting limit; and should be aveided.
Also, data ‘below “all reporting limits
should never be deleted before testing.

Tobit regression (class 25 can-be used
with ‘multiple reporting limits.” Data
should have a normal distribution
around all group means-and equal group
variances 1o use the test. These assump-
tionsare-difficult- to verify with cen-
sored data, especially for small data sets,

One robust method that always can be
used s to censor all data at the highest
reporting lunit, and then perform the ap-
propriate nonparametric test. - Thus the
data set
<lel <l 578 <10 <10 «1012.16:25
would become

<10 <10<10 <10 <10 <10 <10 <10
<J0 121625
and-a rank-sum test would be performed
to- compare -this with‘another data set.
Clearly, this causes a loss of Information
which may be severe enough to-obscure
actual differences between groups (a
loss. of .power). For sonie sitnations,
however, -this s the best that can be
done.

Alternatively, nonparametric ‘score
tests commeon in the medical " “survival
analysis’’ literature sometimes. can’ be
applied to the case of multiple reporting
limits: (26}, These tests modify: uncen-
sored rank test: statistics to compate
groups of data. The modifications allow

for the presence of “multiple reporting
limits. In the most comprehensive Te-
view 0f these score tests (27}, most-of
them were “found: inappropriate for the
case. of unequal sample sizes. Another
crucial assumption of score tests is that
the censoring mechanism: must be inde-
pendent of the effect under investigation
(see’ box). Unfortunately, this often is
not-the case with-environmental- data.
The Peto-Prentice test-with an asymp-
totic. variance estimate ‘was found 1o .be
the Teast sensitive 1o unequal sample siz-
es and 1o differing cénsoring mecha-
nisms (275

In summary, robust hypothesis: tests
have several advantages over their dis-
tributional counterparts when they are

applie. to censored data. These advan--

tages inelude freedom fromyadherence 1o
a normal distribution; greater power for
the skewed distributions common to'eg-
vironmental data; comparisons between
central values such as the median; rather
than - the mean; and the ircorporation of
data below -the reporting limit without
fabrication of values or bias. Informa-
tion contained in Jess-than values is used
accurately-and does not misrepresent the
state of ‘that information.

When adherence to.a normal distribu-

tion can be documented, tobit regression
{class 2} offers the ability to incorporate
multiple reporting limits regardless of a
change in censoring mechanism. Score
tests (class 3) require consistency in-the
censoring mechanism with respect to the
effect being tested.

Metheds for regression

With censored- data; the use -of ‘ordi-
nary least squares {OLS) for regression
is prohibited. Coefficients for slopes and
intercept cannot-be computed without
values. for the censored: observations,
and-substituting: fabricated values may
produce coefficients strongly dependent
on the: values substtuted: Four alterna-
tive methods capable of ‘incorporating
censored observations are described be-
tow. The first-and-last dpprodches, Ken-
dall’s robust fit (28) and contingency ta-
bles:(20),-are-nonparametric-{(class - 3)
methods: requiring no distributional as-
sumptions.. Robust correlation coeffi-
cients also - dare mentioped (20} Tobit
and logistic regression (24,°:29), the sec-
ond-and third ‘methods, fit lines 1o data
using maximum likelihood  (class 2.
Both methods- assume normality -of -the
residuals, though' with logistic regres-
sion, the assumption is after 2 logit

ning data below each repo
the null hypothesis of no.
I Jreater pox
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CiKendalls line -

transformation 124, As before: assump-
tions are sometimes hard to cheek with
censored data.

The choice of method dependson the
amount of censoring prescnt- oy wellas
on the purpose of the analysis, For small
amounts. of censoring (below 20%). et-
ther Kendall's Hine or the tobit line may
be used. Kendall’s tine would be pre-
ferred if the residuals are not normally
distributed, or-when-outhers are present
For moderate censoring (205093, 1obit
or logistic regression mist be - used.
With Jarge amounts.-of censoring, infer-
encesabout: concentrations -themselves
must be abandoned. and-logistic regres-
sion: must be employed. When the ex-
planatory and. respouse variables are
censored. 10bit regression s applicable
forsmall amounts of censoring. For
larger amounts of censoring, contingen-
oy tables orrapk correfation coefficients
are-the -only option:

Kendall’s robust line fit. When one
censoring level 18 present, Kendall's
rank-based  procedure for fitting 4
straight line. 10" data canc test-the signifi-
cance of the relationship between 4 re-
sponse and an-explanatory variable (28,
Alspofintgrestiis. anequation for-the
line, including an ¢stimate of the slope,
This can be computed when the amount
of censoring 18 small.

Kendall's estirate of slope is the medi-
an of all possible pairwise slopes of the
data, To compute the slope with censoring,
compute the median of all possible slopes
twice;once with: zero substitited -for all

less-thans and ‘once with the reporting fimit
substituted. Forsmall amounts of censor-
ing. the resulting slope will change very lit-
tesor not-at-all and can: bereported-as a
range i necessary: I the slope value
change s of ‘an unacceptable magnitude,
tobit- or logistic. regression must.be . per-
formed: Research currently is underway on
methods based on scores that ‘may allow
robust regression fits to data with multiple
reporting Hmits (30,

Tobit regression. Censored response
data” can - be incorporated together with
uncensored observations- inlo. a. proce-
dure called 1obit regression €23, 2431008
sitnilarto OLS except that the coetfi-
cients are Bt by maximum likelihood es-
timation, MLE estimates of slope and
mtercept-are based on-the assumplion
that the residuals are normally distribut-
ed around the tobit line, with constant
variance -across the range -of predicted
values:-Again it v difficult o check
these assumptions with “cedsored data,
Outhers can have a strong ‘influence on
the Jocation: of the line and on signifi-
cance fests (Figure 7as s true with
uncensored OLS. Residuals for uncen-
sored data-should be plotted versus-pre-
dicted values, sothat linearity and con-
stani variance Cassumptions can be
verified for at Jeast small amounts of
censoring: For larger percentages of
legs-thans, decisions whethet: to- trans-
form the response vartable often must be
made on. the basis of previous knowl-
edpe (eips Umetals always negdto-be
log-transformed ")

Tobit regression: also is-applicable
when the response-and explanatory vari-
ables dre censored: for instance, inare-
gression relationship between two
chemical constituents, - The. amount of
censoring, however, must-be sufficiently
smiall “that the “linearity, constant. vari:
ance, and normality. assumptions of the
procedure. can be- checked. Cohn(/§)
and others have proven-that the tobites-
timates are slightly biased and have de-
rived bias corrections for the method.

Logistic regression,. Here, ‘the re-
sponse variable is categorical (29 This
method does not predict concentration,
but rather & probability:of being in dis
crete binary-categories such ag above or
below the reporting limit., A response
above the [imit vsually is assigned a val
ue - of 1. and below: the Himit-a 0. The
probability of being in one category ver-
sus the other 1s tested o see if it differs
as.a function of continuous explanatory
variablets): Examples-clude predicting
the probability-of detecting concentra:
tions of some organic Contaminant from
continuons. variables such as nitrate con-
gentrations;: population-density, percent
of “some appropriate Jand use variable,
or irrigation intensity. Predictions from
this regression-type relationship will fall
between O and- 1. and are inferpreted as
the probability (p)-of observing 4 re-
sponse-of 1. Therefore. [1.- pl s the
probability of 4 zero response:

Logistic régression may be used 1o
predict the probabilines of more than
two response categories. When there are
w2 ovdinal (be. may be placed inan
order) responses possiblé. (m - 1) equa-
tions miust be derived from the data. For
example,if three responses. are possible
{concentrations below: rl = 0 above #f
but “below health standards = 1) and
above health standards = 2), two logistic
regressions must be computed: First, an
equation miust-be written for the proba-
bility of being nonzero (the probability
of being above the »f) Next, the proba-
hility of a 2 (probability of ‘being-above
the ‘health standard) also S modeled. To-
gether, these two equations: completely
define the three probabilities p(yv = 0).p
(y=-lyand p{ve 2) ava functionof the
explanatory variables.

Contingency tables. Contingency ta-
bles are useful in-the regression context
if ‘both- explanatory and response: vari-
ables contain censoring (20). For exam-
ple, -suppose the relationship between
two trace metals in-soils (such as arsenic
and “aluminum) is 1o be described. The
worst procedure again would be to de-
lete the data below the reporting limits
and - perform: a regression. Figure 8
shiows that atrue Hnear relationship with -
negative slope could be completely ob-
seured: it censored data-aredgnored and
only data in the upper right quadrant -
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vestigated. Contingency tables provide a
measure of the strength of the relation-
ship between censored variables—the
phi statistic 9 (20}, a type of correlation
coefficient. An equation that describes
this. relationship, -in: the context of -re-
gression. 15 not’ available.- Instead, ‘the
probability of v being in-one category
can be stated as a function of the cate-
gory-of x. For the data in Figure 8, the
probability of “arsenic: being -above the
reporting limit s 21/36 = 0.58 when alu-
minum:is above reporting limit, and 17/
18:= 094 when aluminum-is below the
reporting:limit.

Rank correlation coefficients, The
robust correlation coefficients Kendall's
T or-Spearman’s p (20} alsorcould be
computed when both variables are-cen-
sored. All wvalues below the reporting
limit for-a single variable are assigned
tied ranks. Rank correlations do not pro-
vide estimates of ‘the probability of ex-
ceeding the reporting. lmit as does a
contingency table, Therefore, they are
not-applicable in a regression’ contexy,
but would be more applicable than con-
tingency tables in a correlation context,
One such context would be in-*‘chemo-
mietrics” (37}, the computation of corre-
lation coefficients for ceénsored data as
inputs to.a.principal components.or fac-
tor analysis,

In summary, relationships between vari-
ables with data below reporting limits can
be:investigated in-a manper similar o re-
gression. - Values should not-be fabricated
for less-thans before regression: Instead, for
small amaounts of censoring and ong report-
ing Jimit, Kendall’s robust line can be fit to
the data. For moderate censoring or multi

ple reporting limits, tobit regression can be
performed. For more severe censoring of
the ‘dependent  variable, logistic regression
is appropriate. When response and explan:
atory variables: conitain Severe censoring,
contingency {ables can be performed.

Less-thans are valuable data

Methods are available that appropri-
ately incorporate data below the report-
ing limit for purposes of estimation, hy-
pothegis testing, and regréssion. The
deletion of censored data or fabrication
of values for less-thans leads to undesir-
able and unnecessary errors.
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